Modeling self - organized network of cities based on the urban triangular lattice model 基于三角點陣模型的自組織城市網絡探討
Maximal outer planar graph and perfect matching in the treelike triangular lattice and the treelike polyminoes 極大外平面圖與樹狀三角系統和四角系統的完美匹配
Waveguide aperture phased array antenna is analyzed using the transparent source technique and the auxiliary fields fdtd . a method to calculate triangular lattice array is put forward 有源結構中以波導口徑相控陣天線為例,將透明源技術與輔助場fdtd結合起來,并提出了一種分析三角形柵格陣列的方法。
In order to study the effect of impurities on transmission property of two - dimension doped photonic crystals , the finite - difference time - domain ( fdtd ) method is used to imitate the transmission coefficient variation in 2 - d photonic crystals with triangular lattices doped 摘要為了研究摻雜對二維光子晶體傳輸特性的影響,應用時域有限差分方法數值模擬了各種摻雜情況下二維三角圓柱光子晶體的透射率即光傳輸函數隨頻率的變化。
An exclusively mathematical approach is proposed to address the scale - free property of self ? ? organized networks of cities . defining a spatial correlation function based on the triangular lattice model of cities stemming from central place networks , a scaling relationship is established between yardstick 以河南省為研究區,對城市空間關聯進行了實證分析,發現在雙對數坐標圖上存在明確的無標度區,從而在揭示自組織城市網絡內在復雜規律的同時,證實了上述方法刻畫無標度城市網絡的有效性。
An exclusively mathematical approach is proposed to address the scale - free property of selforganized networks of cities . defining a spatial correlation function based on the triangular lattice model of cities stemming from central place networks , a scaling relationship is established between yardstick 以河南省為研究區,對城市空間關聯進行了實證分析,發現在雙對數坐標圖上存在明確的無標度區,從而在揭示自組織城市網絡內在復雜規律的同時,證實了上述方法刻畫無標度城市網絡的有效性。
In the first part of the paper , the explicit form of difference equation and periodic boundary condition is derived in cartesian coordinate system . secondly , the dispersive characteristic is analyzed in cylinder coordinate system for many high power microwave devices use cylinder sws . and then the method is extended to calculate the band structure of 2 - d photonic crystal , a modified yee ’ s grid is introduced to calculate the dispersive characteristic in the case of triangular lattice , so that both square lattice and triangular lattice cases can be solved in cartesian coordinate system 周期電磁結構的一個重要應用就是用作高功率微波器件中的慢波系統,考慮到目前大部分高功率微波器件的慢波系統多采用圓柱周期結構,在論文第四章中,在圓柱坐標系下,給出了差分方程和周期性邊界條件的具體形式,同時編寫程序,分析了milosws ,盤荷慢波結構的色散特性。